Package: My.stepwise 0.1.0

My.stepwise: Stepwise Variable Selection Procedures for Regression Analysis

The stepwise variable selection procedure (with iterations between the 'forward' and 'backward' steps) can be used to obtain the best candidate final regression model in regression analysis. All the relevant covariates are put on the 'variable list' to be selected. The significance levels for entry (SLE) and for stay (SLS) are usually set to 0.15 (or larger) for being conservative. Then, with the aid of substantive knowledge, the best candidate final regression model is identified manually by dropping the covariates with p value > 0.05 one at a time until all regression coefficients are significantly different from 0 at the chosen alpha level of 0.05.

Authors:International-Harvard Statistical Consulting Company <[email protected]>

My.stepwise_0.1.0.tar.gz
My.stepwise_0.1.0.zip(r-4.5)My.stepwise_0.1.0.zip(r-4.4)My.stepwise_0.1.0.zip(r-4.3)
My.stepwise_0.1.0.tgz(r-4.4-any)My.stepwise_0.1.0.tgz(r-4.3-any)
My.stepwise_0.1.0.tar.gz(r-4.5-noble)My.stepwise_0.1.0.tar.gz(r-4.4-noble)
My.stepwise_0.1.0.tgz(r-4.4-emscripten)My.stepwise_0.1.0.tgz(r-4.3-emscripten)
My.stepwise.pdf |My.stepwise.html
My.stepwise/json (API)

# Install 'My.stepwise' in R:
install.packages('My.stepwise', repos = c('https://fu-chang.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.62 score 1 stars 42 scripts 574 downloads 3 exports 62 dependencies

Last updated 7 years agofrom:4983700d4a. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 01 2024
R-4.5-winOKNov 01 2024
R-4.5-linuxOKNov 01 2024
R-4.4-winOKNov 01 2024
R-4.4-macOKNov 01 2024
R-4.3-winOKNov 01 2024
R-4.3-macOKNov 01 2024

Exports:My.stepwise.coxphMy.stepwise.glmMy.stepwise.lm

Dependencies:abindbackportsbootbroomcarcarDataclicolorspacecowplotcpp11DerivdoBydplyrfansifarverFormulagenericsggplot2gluegtableisobandlabelinglatticelifecyclelme4lmtestmagrittrMASSMatrixMatrixModelsmgcvmicrobenchmarkminqamodelrmunsellnlmenloptrnnetnumDerivpbkrtestpillarpkgconfigpurrrquantregR6RColorBrewerRcppRcppEigenrlangscalesSparseMstringistringrsurvivaltibbletidyrtidyselectutf8vctrsviridisLitewithrzoo